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During last forty years the Fisher droplet model
(FDM) [1] has been successfully used to analyze the con-
densation of a gaseous phase (droplets or clusters of all
sizes) into a liquid. The systems analyzed with the FDM
are many and varied, but up to now the source of the sur-
face entropy is not absolutely clear. In his original work
Fisher postulated that the surface free-energy FA of a
cluster of A-constituents consists of surface (A2/3) and
logarithmic (ln A) parts, i.e. FA = σ(T ) A2/3 + τT lnA.
Its surface part σ(T ) A2/3 ≡ σo[1 − T/Tc] A2/3 consists
of the surface energy, i.e. σo A2/3, and surface entropy
−σo/Tc A2/3. From the study of the combinatorics of
lattice gas clusters in two dimensions, Fisher postulated
the specific temperature dependence of the surface ten-
sion σ(T )|FDM which gives naturally an estimate for the
critical temperature Tc. Surprisingly Fisher’s estimate
works for the 3-d Ising model, nucleation of real fluids
and nuclear multifragmentation.

To understand why the surface entropy has such a form
we formulated a statistical model of surface deforma-
tions of the cluster of A-constituents, the Hills and Dales
Model (HDM) [2]. For simplicity we consider cylindri-
cal deformations of positive height hk > 0 (hills) and
negative height −hk (dales), with k-constituents at the
base. It is assumed that cylindrical deformations of
positive height hk > 0 (hills) and negative height −hk

(dales), with k-constituents at the base, and the top
(bottom) of the hill (dale) has the same shape as the
surface of the original cluster of A-constituents. We also
assume that: (i) the statistical weight of deformations
exp (−σo|∆Sk|/s1/T ) is given by the Boltzmann factor
due to the change of the surface |∆Sk| in units of the sur-
face per constituent s1; (ii) all hills of heights hk ≤ Hk

(Hk is the maximal height of a hill with a base of k-
constituents) have the same probability dhk/Hk besides
the statistical one; (iii) assumptions (i) and (ii) are valid
for the dales.

The HDM grand canonical surface partition (GCSP)
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corresponds to the conserved (on average) volume of the
cluster because the probabilities of hill z+

k and dale z−k
of the same k-constituent base are identical [2]
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Here Pk is the perimeter of the cylinder base.
The geometrical partition (degeneracy factor) of the

HDM or the number of ways to place the center of a

given deformation on the surface of the A-constituent
cluster which is occupied by the set of {n±

l = 0, 1, 2, ...}
deformations of the l-constituent base we assume to be
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where s1k is the area occupied by the deformation of k-
constituent base (k = 1, 2, ...), SA is the full surface of
the cluster, and Kmax(SA) is the A-dependent size of the
maximal allowed base on the cluster.

The Θ(s1G)-function in (1) ensures that only configu-
rations with positive value of the free surface of cluster
are taken into account, but makes the analytical evalu-
ation of the GCSP (1) very difficult. However, we were
able to solve this GCSP exactly for any surface depen-
dence of Kmax(SA) using the Laplace-Fourier transform
technique [3]:
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The poles λn of the isochoric partition are defined by

λn = F(SA, λn) ≡

Kmax(SA)
∑

k=1

[

z+
k

s1
+

z−k
s1

]

e−k s1λn . (5)

Our analysis shows that Eq. (5) has exactly one real root
R0 = λ0, Im(λ0) = 0, which is the rightmost singularity,
i.e. R0 > Re(λn>0). As proved in [2], the real root R0

dominates completely for clusters with A ≥ 10.
Also we showed that there is an absolute supremum

for the real root R0, which corresponds to the limit of
infinitesimally small amplitudes of deformations, Hk →
0, of large clusters: sup(R0) = 1.06009 ≡ R0 =

2
[

eR0 − 1
]−1

. It is remarkable that the last result is,
first, model independent because in the limit of vanish-
ing amplitude of deformations all model specific param-
eters vanish; and, second, it is valid for any self-non-
intersecting surfaces.

For large spherical clusters the GCSP becomes

Z(SA) ≈ 0.3814 e1.06009 A2/3
, which, combined with

the Boltzmann factor of the surface energy e−σoA
2/3/T ,

generates the following temperature dependent surface

tension of the large cluster σ(T ) = σo

[

1 − 1.06009 T
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]

.

This result means that the actual critical temperature
of the FDM should be Tc = σo/1.06009, i.e. 6.009 %
smaller in σo units than Fisher originally supposed.
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